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Abstract: Today, power electronic-based converters are at the core of many modern systems,
such as smart grids and electric vehicles. In this context, the Dual Two-Level Inverter (DTLI)
supplying an open-end winding machine offers an innovative and promising solution for
marine propulsion, aeronautics, and electric vehicles. This configuration provides several
advantages, including a reduced DC bus voltage, enhanced fault tolerance, and improved
overall system performance. However, ensuring optimal energy efficiency and high-power
quality remains a major challenge given the increasing demands for performance and
sustainability. This paper presents a state-of-the-art review of the main DTLI configurations
and their impact on system performance. Three architectures are analyzed, highlighting
their benefits and limitations. This study aims to demonstrate the influence of the DC bus
voltage ratio and pulse width modulation strategies on power quality and energy efficiency.
The objective is to enhance the understanding of the DTLI’s potential and to guide its
integration into other electrical systems.

Keywords: dual two-level inverter; open-end winding; power quality; efficiency;
common-mode voltage; overcharging DC bus; zero sequence voltage

1. Introduction
Over the past century, industrial development has significantly contributed to climate

change, primarily by increasing greenhouse gas emissions (see Figure 1) [1]. In response to
this reality, a global transition towards more environmentally friendly energy sources and
less polluting industries has become imperative [2]. In this context, enhancing the quality
and energy efficiency of electric drive systems is a crucial factor in the shift towards greener
industries. Technological advancements in this field aim to develop more efficient systems
that minimize energy consumption and losses while ensuring high levels of performance,
reliability, and durability [3]. In recent years, extensive research has been conducted to
overcome this technological challenge.

Several studies have focused exclusively on improving power quality. For instance,
research in [4] has demonstrated that integrating FACTS devices, such as the Unified
Power Quality Conditioner and the Static Synchronous Compensator, can reduce total
harmonic distortion (THD) and enhance the stability of modern power distribution grids.
Similarly, the study in [5] investigated the implementation of a Dynamic Voltage Restorer
to mitigate voltage sags and ensure a stable supply to sensitive loads. Additionally, the
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authors of [6,7] analyzed the impact of multilevel inverters on the power quality of wind
and photovoltaic systems. The study in [8] examined converter topologies dedicated to
high-power electrolysis and their influence on the quality of power injected into AC grids.
Furthermore, research in [9–12] proposes a robust control strategy based on sliding mode
and fuzzy logic, applied to power electronic converters. This approach aims to enhance the
integration of wind turbines and photovoltaic power plants into the grid, enabling them to
provide ancillary services while ensuring compliance with grid codes. In addition, studies
in [13–15] propose advanced fixed-time sliding mode control strategies combined with
nonlinear observers to enhance power quality in microgrid applications. These approaches
improve disturbance rejection, ensure fast and robust regulation of the DC-link and output
voltages, and enhance the dynamic performance of converters operating within renewable-
based hybrid networks. Moreover, studies in [16–18] focus on detecting and diagnosing
faulty current sensors to improve power quality by ensuring the stable and reliable control
of wind power systems. Finally, research in [19,20] explores high-frequency modeling of
electrical machines to design high-performance filters, ultimately improving power quality
in the grid.

Figure 1. Worldwide greenhouse gas emissions [1].

In the context of improving energy efficiency, several researchers have focused on
reducing losses and optimizing energy management to enhance the overall performance
of electrical systems. For example, the authors of [21] analyzed asymmetric bidirectional
DC-DC converters for power electronic transformers. Their findings demonstrated that
these converters reduce peak current and enhance switch safety, thereby optimizing energy
efficiency. And the study by [22] proposed the use of a multi-port converter with a high-
frequency link for interfacing clean power sources, improving system flexibility and overall
efficiency. In addition, the research in [23] introduced a multi-objective approach based
on Pareto analysis for Volt/Var control of photovoltaic inverters, enabling the optimized
management of reactive power injected into the grid. Other works, such as those in [24–28],
have explored advanced power maximization techniques for photovoltaic and wind power
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systems. These approaches allow for a more efficient utilization of solar and wind resources
while minimizing energy losses.

In the pursuit of simultaneously improving power quality and energy efficiency,
research aims to address a major challenge in modern power systems: reconciling perfor-
mance, reliability, and energy optimization. Studies in [6,29–31] have explored innovative
converter configurations to reduce losses, enhance the integration of renewable energy
sources, and ensure a high-quality power supply. The integration of NPC multilevel in-
verters, as investigated in [32], has led to a reduction in THD and power losses, thereby
contributing to overall efficiency improvements. Other studies, such as those in [33,34],
have introduced advanced inverter architectures designed to optimize both power quality
and efficiency in photovoltaic and electric traction systems. Regarding power electronic
interfaces, the authors of [35,36] have proposed integrated solutions for electric and plug-in
hybrid vehicles, combining an on-board charger and a traction inverter within a unified
system. Further research in [37,38] has focused on optimizing multilevel inverters and
power electronic converters to enhance the energy efficiency and modularity of electric
vehicle charging systems. Additionally, studies in [39,40] have explored the use of cas-
caded H-bridge inverters and Z-source inverters to optimize electric vehicle performance,
extending driving range and improving energy efficiency. Finally, the study in [41] intro-
duces a novel high-performance switched active Z-source inverter topology, demonstrating
significant improvements in the lifespan and autonomy of hybrid energy storage systems.

These recent advancements highlight the crucial role of electrical engineering research
in enhancing both power quality and energy efficiency while addressing the evolving
constraints and demands of modern electrical systems. In this context, increasing at-
tention is being given to a new DC/AC power electronic configuration. Originally pro-
posed by H. Stemmler and P. Guggenbach [42], this topology differs from conventional
approaches by isolating the neutral point from the stator windings and arranging two
inverters in series, either as two-level or multilevel structures. This design enables inde-
pendent control of the machine windings through two separate inverters, one for each
phase set, leading to what is known as an open-end winding machine driven by a Dual
Two-Level Inverter (OEWM-DTLI). The literature identifies three primary power supply
configurations for this topology: (i) common DC bus supply (C-DCB) [43,44], (ii) two
isolated DC bus sources (TI-DCB) [45,46], and (iii) common DC bus supply with a floating
capacitor (DCB-FC) [47,48]. The increasing interest in the DTLI structure is driven by its
growing adoption in diverse applications, including electric vehicles [49–52], aerospace [53],
and marine propulsion systems [54]. The widespread adoption of this configuration is due
to its numerous benefits, including the following:

- The simplicity of the power circuit [55,56].
- The absence of fluctuations in the neutral point [57].
- Enhanced fault tolerance [58].
- Lower DC bus voltage [51].
- A wider operating speed range [59–61].
- The ability to independently control the stator current of each phase [62].
- The potential to achieve a switching frequency that is effectively double, depending

on the modulation strategy employed [63].
- The generation of a voltage space vector similar to that of a three-level inverter [64].
- The flexibility to incorporate various energy storage systems on the DC bus of each

inverter [65,66].

Nevertheless, it is crucial to recognize that this configuration also comes with certain
challenges, such as the following:
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- The risk of capacitor overcharging due to unequal DCB voltages in TI-DCB power
supplies [67]: this can result in capacitor damage and unwanted harmonics in the
motor phase voltage [68].

- The occurrence of zero-sequence voltage (ZSV) caused by the direct coupling of
two inverters [69]: this leads to homopolar currents, which generate triple current
harmonics [62], adversely affecting motor windings, increasing copper losses, and
contributing to circuit saturation [62].

- The presence of common-mode voltage (CMV) resulting from the high-frequency
switching of inverter devices [70–72]: CMV creates common-mode currents between
the stator phase windings and ground, which can lead to accelerated bearing wear,
reducing their service life [73]. Additionally, these currents do not contribute to
electromechanical energy conversion and add to the motor’s heat losses [74].

- An increase in power losses, due to the greater number of power switches when
compared to two-level converters.

It should be noted that each DTLI configuration has a direct influence on performance,
complexity, and field of application. Table 1 summarizes the main applications, along with
the advantages and disadvantages associated with each type of configuration. In order to
fully exploit the potential of these structures and optimize their design, this paper proposes
an in-depth state-of-the-art review of the three DTLI configurations and analyzes their
impact on system quality and efficiency. To this end, this paper is organized as follows:
Section 2 presents the principle of operation of the system under study; Section 3 explores
in detail the three DTLI configurations and their specific features; Section 4 analyzes the
effect of the DC bus voltage ratio on DTLI performance; Section 5 deals with the control
principles applied to this structure; Section 6 discusses the evaluation criteria in terms of
quality and efficiency; and, finally, Section 8 summarizes the conclusions of this study.

Table 1. Three different DTLI configurations with their applications, advantages, and drawbacks.

Configuration Type C-DCB TI-DCB DCB-FC

Applications
EV [75], HEV [76], aeronautics [77],

start-up generator [78,79],
fault-tolerant control [80].

EV systems [81–83], EV in the event of a
fault [84], efficiency optimization in EV [85],

PV system connected to microgrids [86].

Integrated start/alternator [87], electric
aeronautics [88], EV and HEV for a

wide speed range [49,89],
fault-tolerant control [90].

Output voltage levels 2 [88]. 3 ≥ [91]. 3 ≥ [91].

Advantages

- No additional hardware required.
- Simple control.
- Has the highest fault tolerance

because it is symmetrical.

- Absence of ZSV.
- Greater tolerance to faults.

- Avoid circulation of ZSV.
- No isolation circuit required.

Drawbacks
- Presence of ZSV.
- Presence of CMV.

- The overcharging problem.
- Making the system bulky and

increasing costs.

- Less efficient because it charges the
capacitor via the motor windings and
requires more complex algorithms to
balance the capacitor voltage level.

- Presence of CMV.

2. Study System Definition and Operating Principle
The basic principle of the DTLI configuration is to supply the stator using two sepa-

rate inverters instead of coupling it in a star or delta configuration [92,93] (see Figure 2).
In this configuration, each side of the stator is powered by a dedicated inverter (see
Figure 3). This approach has gained popularity in various modern applications due to
its advantages [49–51,53,54].
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Figure 2. Typical configurations of a star- or delta-connected AC machine.

Figure 3. Schematic diagram of machine control with DTLI.

This structure consists of two two-level inverters, referred to as inverter i (Master
inverter) and inverter j (Slave inverter), respectively. The voltage vectors in an αβ reference
frame for each inverter (Vi and Vj) can be calculated as follows [94]:

Vi =

√
2
3

Vdc

(
Si1 + γ Si3 + γ2 Si5

)
(1)

Vj =

√
2
3

Vdc

(
Sj1 + γ Sj3 + γ2 Sj5

)
(2)

where γ = ej 2π
3 , Vdc is the DC bus voltage, and Si1, Si3, Si5 and Sj1, Sj3, Sj5 represent the

switching states of inverters i and j, respectively.
As highlighted in the study of [95], the operating principle of the DTLI structure relies

on the coordinated synthesis of voltage vectors from both inverters to generate the rotating
magnetic field required for motor operation. In a symmetric configuration, when the Master
and Slave inverters apply identical voltage vectors simultaneously, their resulting magnetic
fields tend to cancel each other out. This cancelation disrupts the formation of the rotating
field, potentially causing the motor to stop. To overcome this limitation, asymmetric control
strategies are employed. These strategies introduce a phase shift between the voltage
vectors generated by the Slave inverter relative to those of the Master inverter, ensuring
constructive vector interaction, effective field generation, and sustained motor operation.

Figure 4 illustrates the hexagon formed by the eight voltage vectors generated by
Equations (1) and (2). Within this hexagon, each inverter generates six active vectors and
two zero vectors. The values “1” and “0” correspond to the on and off states of the inverter
switches, respectively.
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(a)  (b) 

Figure 4. Vectorial diagram of the voltage space of each inverter: (a) Master inverter. (b) Slave
inverter.

Considering the circuits AA′O′O, BB′O′O, and CC′O′O in Figure 3, the three-
phase voltages VAA′ , VBB′ and VCC′ can be expressed using Kirchhoff’s law, as shown
in Equation (3): 

VAA′ = VAO − VA′O′ + VOO′

VBB′ = VBO − VB′O′ + VOO′

VCC′ = VCO − VC′O′ + VOO′

(3)

where VAO, VBO, VCO and VA′O′ , VB′O′ , VC′O′ represent the three-phase pole voltages of the
master inverter and the slave inverter, respectively.

Assuming that the three-phase loads are symmetrical, the sum of the load phase
voltages must be zero, as expressed in Equation (3).

VAA′ + VBB′ + VCC′ = 0 (4)

Thus, VOO′ can be obtained by summing the three equations in (3), leading
to Equation (5).

VOO′ =
VA′O′ + VB′O′ + VC′O′

3
− VAO + VBO + VCO

3
(5)

By substituting Equation (5) into Equation (3), the phase voltage expression is updated
as follows: 

VAA′ =
(

2
3 VAO − 1

3 VBO − 1
3 VCO

)
−

(
2
3 VA′O′ − 1

3 VB′O′ − 1
3 VC′O′

)
VBB′ =

(
2
3 VBO − 1

3 VCO − 1
3 VAO

)
−

(
2
3 VB′O′ − 1

3 VC′O′ − 1
3 VA′O′

)
VCC′ =

(
2
3 VCO − 1

3 VAO − 1
3 VBO

)
−

(
2
3 VA′O′ − 1

3 VC′O′ − 1
3 VB′O′

) (6)

From Equation (6), it can be observed that the phase voltage Vij applied by the DTLI
to the OEWM in Figure 2 corresponds to the voltage difference between the two inverters,
Vi and Vj. Thus, Vij can be expressed by Equation (7) [96].

Vij = Vi − Vj (7)

In the power circuit configuration of the three-phase inverters shown in Figure 3, the
two switches in each inverter leg operate in a complementary manner, meaning that, when
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one switch is turned on, the other is turned off. By utilizing this switching behavior, the
phase output voltages of each inverter, referenced to the negative terminal of the DCB, can
be expressed in matrix form as follows:vi,A

vi,B

vi,C

 =
Vdc
3

 2 −1 −1
−1 2 −1
−1 −1 2

·
Si1

Si3

Si5

 (8)

vj,A′

vj,B′

vj,C′

 =
Vdc
3

 2 −1 −1
−1 2 −1
−1 −1 2

·
Sj1

Sj3

Sj5

 (9)

As presented in Equation (7), the phase voltages applied by the DTLI to the OEWM
are obtained by computing the difference between the output voltages of the two inverters.
This relationship can therefore be modeled by the following equation, which yieldvij

vij

vij

 =

vi,A − vj,A′

vi,B − vj,B′

vi,C − vj,C′

 =
Vdc
3

 2 −1 −1
−1 2 −1
−1 −1 2

·
Si1 − Sj1

Si3 − Sj3

Si5 − Sj5

 (10)

Based on this principle, the space vector diagram of a DTLI can be represented in
Figure 5, where the hexagonal space vector set generated by the slave inverter ‘orbits’
around the hexagon of the master inverter.

Figure 5. The principle of a space vector diagram resulting from a DTLI.

3. Various System Configurations Studied
In the literature, three different types of system configurations powered by two in-

verters are identified (see Figure 6): (i) a single common DCB source, (ii) two isolated
DCB sources, and (iii) a single DCB source with a floating capacitor.
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Figure 6. Three types of DTLI configurations for an OEWM.

3.1. Configuration Type I: A Single Common DCB Source

The DTLI drive circuit configuration powered by a single common DCB source (Type I)
is shown in Figure 7, where a two-level voltage inverter is connected to each side of
the OEWM.

Figure 7. Configuration of a DTLI powered by a common DCB.

Consequently, the DTLI configuration uses twelve semiconductor switching devices
(typically IGBTs or MOSFETs) and twelve antiparallel diodes. This configuration relies
on the combination of the space vectors from both inverters, resulting in 64 (23 × 23)
possible switching combinations distributed across 19 distinct spatial locations. In this
configuration, the set of space vector hexagons generated by the slave inverter ‘orbits’
around the space vector hexagon of the master inverter. This DTLI configuration is similar
to that of a three-level inverter, as shown in Figure 8. It consists of three hexagons with
vertices of different lengths: a vertex of length 2/3Vdc (hexagon ABCDEF), a vertex of
length 2/

√
3Vdc (hexagon HJLNQS), and a vertex of length 4/3Vdc (hexagon GIKMPR).

Table 2 summarizes the classification of these three hexagons into different vector groups.
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Figure 8. Vector diagram of the space of a DTLI.

Table 2. Voltage vector groups for DTLIs with a common DCB.

Vector Name N◦ of Vectors Magnitude

Zero vectors O 0

Small vectors ABCDEF 2/3Vdc

Intermediate vectors HJLNQS 2/
√

3Vdc

Large vectors GIKMPR 4/3Vdc

However, the DTLI configuration powered by a single DC bus source inherently
leads to the presence of ZSV, resulting in excessive current and voltage THD. This phe-
nomenon results in high losses, increased temperature, and undesirable vibrations within
the machine [97]. Additionally, this configuration is also affected by the presence of CMV.

3.2. Configuration Type II: Two Isolated DCB Sources

This topology is the same as that described in Section 3.1. However, it is based on the
use of two isolated DCB sources (Type II), as shown in Figure 9.

This configuration can be divided into two categories: DTLI configurations with
symmetrical and asymmetrical voltage sources.

As shown in Figure 9, this configuration features two separate DC buses, which
are mutually isolated [55,57,91,96,98–108]. The isolation of the DC buses prevents the
circulation of triple-harmonic currents.

The use of the DTLI system, with two DCB sources of unequal values (asymmetrical
voltage source), leads to a significant change in the converter operation, compared to
the scenario where both DCB sources have equal values (symmetrical voltage source).
Figure 10 illustrates the voltage vector generation diagrams for these two cases: one with
equal voltage sources and the other with unequal voltage sources

(
VMaster

dc = 2VSlave
dc

)
.
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Figure 9. Configuration of a DTLI powered by a two isolated DCB.

(a) (b) 

Figure 10. Voltage vector compositions: (a) symmetrical voltage source and (b) asymmetrical source
ratio of (2:1).

The vector voltage diagrams are derived by considering the complex switching sequences
Si and Sj. These sequences are defined for the master inverter (Si1 = 1, Si3 = 0, Si5 = 0) and
for the Slave inverter

(
Sj1 = 1, Sj3 = 1, Sj5 = 0

)
, as shown in Figure 3. The output voltages are

given by Equation (11), and the corresponding diagrams are provided in Figure 10.{
Vi = VMaster

dc Sx + VSlave
dc Sy

Vj = VMaster
dc Sy + VSlave

dc Sx
(11)

The complex vectors resulting from various switching combinations are used to
indicate the direction of the complex voltage vectors’ positions. In this context, there
are two voltage vectors: one aligned with the “α” axis and the other 60 degrees out of phase
with the “α” axis. The amplitude of the voltage vectors is determined by the electrical
source value. If the two voltage sources are of equal intensity, the corresponding voltage
vectors will have the same magnitude and orientation. However, if the voltages are unequal,
such as in a 2 : 1 voltage ratio, additional vectors are generated. These extra vectors can be
observed in Figure 10. Further analysis shows that some of these additional vectors may
be redundant. By employing asymmetrical voltage sources, these redundant vectors can
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be isolated, increasing the number of available output voltage vectors. This provides a
broader range of options for generating distinct output voltages.

Figure 11a illustrates a spatial vector scheme for a two-level DTLI, utilizing voltage
sources with an unequal voltage ratio of 2 : 1. This converter system, with a 2 : 1 voltage
ratio, generates 37 voltage vectors, which are uniformly and symmetrically distributed in
the αβ plane.

(a) (b) 

Figure 11. Spatial vector diagram of a DTLI with asymmetrical sources: (a) source ratio 2 : 1 and
(b) source ratio 3 : 1.

On the other hand, the vector diagram shown in Figure 11b is constructed considering
the use of asymmetrical sources with a voltage ratio of 3 : 1. In this converter configuration,
48 voltage vectors can be generated. However, these vectors are distributed asymmetrically
in the αβ plane. It should be noted that, in this arrangement, certain areas present chal-
lenges regarding the selection of the three closest vectors. This complexity may introduce
additional harmonics into the output waveform. Furthermore, in this configuration, the
number of redundant states is minimized. As a result, at lower modulation levels, the
inverter may cause the overcharging of low-voltage capacitors in specific regions.

The main drawback of this configuration with two iso-linked DC bus sources is the
risk of overcharging the DC buses. To prevent this issue, additional components must be
integrated.

3.3. Configuration Type III: A Single DCB Source with an FC

This configuration is similar to the one described in Section 3.1. However, a key differ-
ence is that, in this structure, the slave inverter is supplied by a floating capacitor (Type III)
instead of a DCB source. This distinction is illustrated in Figure 12.

In the DTLI with an FC, as illustrated in Figure 12, the voltage ratio between the
DCB sources is defined as 1 : x, where x is a constant coefficient. In this setup, the master
inverter is supplied with a fixed DCB voltage Vdc, while the Slave inverter is powered by
a floating capacitor that provides a voltage of x ∗ Vdc. The capacitor is connected without
a fixed reference point, and its voltage is naturally self-balanced based on the system
configuration and the applied control strategy.
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During the modulation process, the phase currents can flow through the FC, resulting
in voltage fluctuations across it. By convention, a current flowing into the Slave inverter is
considered positive, and the switching states of the Slave inverter directly influence the
current through the capacitor.

Figure 12. Configuration of a DTLI powered by a single DCB source with an FC.

Since a single modulation vector can be synthesized from multiple switching states,
these vectors can be categorized based on their impact on the current flowing through the
FC as follows:

- Type 1 vectors: These vectors induce two opposite current flows within the same
phase, such as positive and negative currents in phase a, depending on the specific
switching states.

- Type 2 vectors: These vectors result in current flow in only one direction within a
given phase, for example, only a positive current in phase a.

- Type 3 vectors: These vectors produce no current flow through the FC, regardless of
the switching states.

- Type 4 vectors: These vectors generate current flow in different phases, such as a
positive current in phase a in one state and a negative current in phase c in another.

This classification offers valuable insight into the interaction between modulation
vectors and the dynamic behavior of the FC. A more detailed example of the application of
these principles is provided in Section 5.

This configuration combines the advantages of the other two setups, offering multi-
level output voltage and voltage amplification capabilities, thanks to the elimination of
ZSV circulation. Additionally, it eliminates the need for an isolation circuit, as one of the
inverters is floating.

In this DTLI configuration with an FC, the main challenge is regulating the FC voltage
to the desired value. Likewise, in DTLI systems with isolated asymmetrical power supplies,
a potential concern is that the capacitor on the low-voltage side may be overcharged due to
energy flow from the high-voltage side.

In summary, each of the three DTLI configurations presents distinct characteristics
in terms of performance, complexity, and implementation requirements. The Type I con-
figuration stands out for its structural simplicity and ease of implementation. However,
it is affected by the generation of CMV and ZSV, which can degrade the output volt-
age quality and increase the overall system losses. The Type II configuration eliminates
these undesirable effects and enhances modulation flexibility, especially when asymmet-
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ric voltage sources are used. On the other hand, the need for galvanic isolation adds to
the cost and increases the risk of capacitor overcharging on the lower voltage side. The
Type III configuration offers a good compromise by combining the benefits of the two
previous structures while eliminating the need for isolation. Nonetheless, it introduces a
challenge in regulating the voltage across the floating capacitor, particularly in transient
operating conditions. Therefore, the selection of the most appropriate configuration should
be guided by the specific requirements of the application, including cost constraints, control
complexity, and desired output voltage quality.

4. DCB Voltage Factor and Ratio
4.1. DCB Voltage Factor

The DCB voltage factor (k) essentially defines the area of the space vector diagram,
the inverter’s output level characteristics, and the distribution of switching vectors. The
area of the space vector diagram limits the maximum utilization of the DC bus voltage,
while the level characteristics determine the output quality. It is calculated by dividing the
maximum output voltage of a DTLI Vre f ,max by the DC bus voltage Vdc/31/2 in the linear
modulation region, as expressed in Equation (12) [48].

k =

√
3Vre f ,max

Vdc
(12)

4.2. DCB Voltage Ratio

The diagram in Figure 3 shows that the output voltage of a DTLI is essentially the
difference between the output voltages generated by the master and slave inverters. Conse-
quently, the ratio between these voltages plays a critical role in shaping the distribution of
space vectors in a DTLI. This voltage ratio variation directly affects two key aspects: the
area of the space vector diagram and the number of output voltage levels produced by the
inverter.

To better illustrate these effects, Figure 13 presents the space vector diagrams of DTLIs
for different voltage ratios. As shown, the voltage ratios of 1 : 0.33, 1 : 0.5, and 1 : 1 allow
the generation of three, four, and five distinct output levels, respectively. In other words,
the selected voltage ratio determines the number of achievable output levels, which directly
influences the DTLI’s performance characteristics.

Figure 13. Space vector diagram of DTLIs with different voltage ratios.



Appl. Sci. 2025, 15, 5611 14 of 36

5. DTLI Control Features
A review of the existing literature highlights two main modulation strategies ap-

plicable to DTLIs: coupled and decoupled schemes [95,105]. These two strategies pro-
pose distinct approaches to inverter control and significantly influence the performance
of OEWM.

5.1. Coupled Modulation Control

In the case of coupled modulation, a DTLI can be treated as a single multilevel
converter. To minimize switching activity, an alternating sub-hexagonal center (SHC)
modulation strategy can be implemented, whereby one inverter operates while the other
remains in a steady state during a switching period [104,109,110].

Figure 14 illustrates the operation of this alternating SHC modulation technique.
The entire space vector diagram is segmented into six regions, each associated with a
central SHC point marked by green circles labeled A through F. For each SHC, one inverter
performs the switching while the other remains fixed, and then their roles alternate for the
subsequent SHC.

Figure 14. Sub-hexagonal center alternative modulation scheme principle for DTLI.

For instance, point A corresponds to the SHC of the light-green OSGH quadrilateral in
Figure 14. Within this region, the switching states can either involve keeping the master inverter
fixed at Vi1 while switching the slave inverter across Vi1Vj8, Vi1Vj1, Vi1Vj2, Vi1Vj3,Vi1Vj4, Vi1Vj5,Vi1Vj6

and Vi1Vj7, or vice versa, holding the Slave inverter constant at Vj4 and switching the master inverter
among states such as Vi8Vj4, Vi1Vj4, Vi2Vj4, Vi3Vj4,Vi4Vj4, Vi5Vj4, and Vi7Vj4.

The authors in [109] conducted a thermal loss analysis of this alternating SHC scheme,
demonstrating its impact on system efficiency. Additionally, the authors in [110] showed
that this modulation strategy leads to an equal distribution of power losses between the
two inverters.
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A power-sharing strategy is also defined in [111], taking into account unbalanced
power distribution and modulation index values. Moreover, several studies [68,99,112–128]
have focused on capacitor voltage regulation for TI-DCB configuration and DCB-FC config-
uration of DTLIs, respectively.

5.2. Decoupled Modulation Control

As previously mentioned, the output voltage of a DTLI is obtained as the difference
between the voltages generated by the two individual inverters.

Under decoupled modulation, the reference voltage Vre f is decomposed into two
components, namely, Vre f ,Master and Vre f ,Slave, which are individually supplied to the master
and slave inverters, respectively.

This decomposition process is mathematically represented by Equation (13).

Vrefe
jθDTLI = Vref,PrinejθMaster − Vref,AuxejθSlave (13)

The reference vector synthesis diagram is illustrated in Figure 15. Based on
Equation (13) and the diagram, it is evident that there are four user-defined parameters,
which provide substantial control flexibility that can be strategically exploited.

Figure 15. DTLI decoupled modulation principle.

For instance, the authors in [69] adjusted the parameters θMaster and θSlave to enhance
the output voltage profile of DTLIs.

To minimize output current fluctuations, the authors of [96] conducted an analytical
study and subsequently proposed a control strategy grounded in decoupled modulation.

Researchers in [67,111,119–126,128–131] focused on capacitor voltage regulation for
TI-DCB configuration and the DCB-FC configuration of DTLIs, respectively.

Nevertheless, despite its high flexibility, decoupled modulation introduces undesired
voltage steps at the inverter output [119], which can deteriorate the inverter’s output
performance.
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6. Various Criteria for Assessing the Power Quality and Efficiency of the
Studied System

The deployment of DTLI configurations offers promising prospects across a wide
spectrum of power electronic applications. Nevertheless, each configuration presents a
unique set of technical challenges that must be addressed to ensure optimal operation and
achieve the desired performance.

In this context, we examine the challenges associated with three distinct DTLI archi-
tectures, whose difficulties stem from their specific characteristics, ranging from complex
voltage modulation to the management of asymmetrical power sources.

A comprehensive understanding of these constraints is crucial to fully harness the
benefits provided by the various DTLI topologies. These challenges can broadly be classified
into two categories: those related to power quality and those concerning energy efficiency.

6.1. Power Quality

Electrical power quality has become a critical factor in the design and operation of
power systems and electrical machines. This subject has garnered considerable interest
from both academic researchers and industrial practitioners, leading to the publication of
numerous works in this dynamic and relatively recent field [132].

Power quality encompasses several key issues, such as voltage dips, outages, harmon-
ics (notably THD), over-voltages, unbalances, and voltage fluctuations, among others.

With the introduction of new converter configurations, two additional quality concerns
arise: common-mode voltage and zero-sequence voltage.

This study addresses a range of quality-related challenges, including harmonic dis-
tortion, common-mode voltage, zero-sequence voltage, DC bus overcharging, and the
regulation of floating capacitor voltages.

6.1.1. THD

In systems associated with power converters, output voltage/current quality is closely
linked to THD. The IEEE Std 519-1992 standard recommends harmonic control require-
ments for electrical systems [133].

By definition, THD characterizes the effects of harmonics on power system voltage
and can be applied to low-, medium-, and high-voltage systems [133]. The THD is defined
by Equation (14).

THDX =

√
∑∝

2 X2
h

X1
(14)

where h is the harmonic order, Xh is the amplitude of the harmonic component, and X1 is
the amplitude of the fundamental component.

The IEEE Std 519-1992 standard defines voltage distortion limits at the Point of Com-
mon Coupling (PCC) and requires that customers do not introduce excessive current
harmonics [133]. For systems where the bus voltage at the PCC is less than or equal to 69 kV,
individual voltage distortion must remain below 3%, and the THD must not exceed 5%.
The Fast Fourier Transform (FFT) can be used to perform a spectral analysis of electrical
signals and thus serves as an effective tool for THD evaluation [134].

6.1.2. Common-Mode Voltage (CMV)

In three-phase sinusoidal power systems, balance and symmetry are fundamental
under normal operating conditions. The phase voltages naturally compensate each other,
and grounding the source’s neutral point reinforces this symmetry.

However, when a three-phase pulse width modulation (PWM) inverter is employed,
the switching of asymmetrical voltages introduces a DC voltage (Vdc) across the load phases.
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This deviates from the ideal sinusoidal behavior, as the instantaneous sum of the load
terminal voltages is no longer zero. This deviation leads to the emergence of CMV between
the load and ground [135].

CMV results from the high-frequency switching of inverter devices. The common-
mode currents induced between the stator windings and ground can have serious conse-
quences, such as premature bearing degradation, increased thermal losses, and an overall
decline in motor performance [73].

The CMV generated by the inverter can be expressed by the following equation [136]:

Vcmv =
1
3
(Va + Vb + Vc) (15)

In DTLI systems, like the one shown in Figure 5, the CMV for each inverter can be
calculated using the formulas provided in the study of [58]:

Vcmvi =
Si1 + Si3 + Si5

3
Vdc (16)

Vcmvj =
Sj1 + Sj3 + Sj5

3
Vdc (17)

Consequently, the CMV of DTLIs can be calculated as follows [137]:

Vcmv =
Vcmvi + Vcmvj

2
(18)

Vcmv =
(Si1 + Si3 + Si5) +

(
Sj1 + Sj3 + Sj5

)
6

Vdc (19)

In the context of DTLI systems, CMV-related issues become more critical due to the
frequent high-frequency switching of the inverters’ switches. This rapid switching can
shorten motor life and increase the risk of inverter failure. Moreover, the impact of these
issues is amplified by factors such as shaft voltages, bearing currents, and electromagnetic
disturbances caused by common-mode leakage currents [138].

The effects of CMV on the system are primarily influenced by the parasitic parameters
between the motor and ground. Among these, parasitic capacitance (Cs) and parasitic
resistance (Rb) are crucial in the generation of bearing current, an undesirable component
that can negatively affect the system’s performance. A schematic diagram (Figure 16) effec-
tively illustrates how these parasitic parameters contribute to bearing current generation in
response to CMV.

Figure 16. CMV equivalent circuit of an OEWM.

One of the key advantages of a DTLI connection is its ability to attenuate CMV, thereby
mitigating the problems associated with it. The combination of spatial vectors resulting
from the use of DTLIs leads to a variety of CMV levels, as thoroughly demonstrated in
Table 3. From this table, it is evident that large vectors (such as Vi1Vj4, Vi2Vj5, Vi3Vj6, Vi4Vj1,
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Vi5Vj2, Vi6Vj3) and zero vectors (Vi8Vj7, Vi7Vj8Vi8Vj7, Vi7Vj8) effectively eliminate CMV. On
the other hand, zero vectors (Vi7Vj7, Vi8Vj8) and intermediate vectors (Vi1Vj3, Vi2Vj4, Vi3Vj5,
Vi4Vj6, Vi5Vj1, Vi6Vj2, Vi1Vj5, Vi2Vj6, Vi3Vj1, Vi4Vj2, Vi5Vj3, Vi6Vj4) generate varying levels
of CMV.

Table 3. CMV switching vector variations.

N◦ Vectors CMV Levels

1 Vi8Vj8 −Vdc/2

2 Vi1Vj8, Vi3Vj8, Vi5Vj8, Vi8Vj1, Vi8Vj3, Vi8Vj5 −Vdc/3

3 Vi1Vj1, Vi1Vj3, Vi1Vj5, Vi3Vj1, Vi3Vj3, Vi3Vj5, Vi5Vj1, Vi5Vj3, Vi5Vj5,
Vi2Vj8, Vi4Vj8, Vi6Vj8, Vi8Vj2, Vi8Vj4, Vi8Vj6

−Vdc/6

4
Vi8Vj7, Vi1Vj2, Vi1Vj4, Vi1Vj6, Vi3Vj2, Vi3Vj4, Vi3Vj6, Vi5Vj2, Vi5Vj4,
Vi5Vj6, Vi2Vj1, Vi2Vj3, Vi2Vj5, Vi4Vj1, Vi4Vj3, Vi4Vj5, Vi6Vj1, Vi6Vj3,

Vi5Vj5, Vi7Vj8

0

5 Vi2Vj2, Vi2Vj4, Vi2Vj6, Vi4Vj2, Vi4Vj4, Vi4Vj6, Vi6Vj2, Vi6Vj4, Vi6Vj6,
Vi1Vj7, Vi3Vj7, Vi5Vj7, Vi7Vj1, Vi7Vj3, Vi7Vj5

Vdc/6

6 Vi2Vj7, Vi4Vj7, Vi6Vj7, Vi7Vj2, Vi7Vj4, Vi7Vj6 Vdc/3

7 Vi7Vj7 Vdc/2

• CMV Reduction

Various approaches have been developed to mitigate CMV, including the use of passive
and active common-mode filters [139–142]. However, the implementation of these devices
introduces additional costs and significant power losses. As a result, PWM methods
have become the preferred solution for two-level inverters, though they do not fully
eliminate CMVs [143,144].

In a previous study [145], an approach was presented that exclusively uses even or
odd space vector combinations to reduce CMV from ±Vdc/2 to ±Vdc/6, without relying
on null vector states, within a conventional two-level inverter. Additional modulation-
based strategies have been developed to eliminate common-mode voltages by using only
a specific subset of the output space vectors [146,147]. However, these methods face a
limitation regarding the maximum phase voltage, which restricts the optimal use of the
DC bus voltage.

6.1.3. Zero-Sequence Voltage (ZSV)

It is widely recognized that unbalanced three-phase voltages can be decomposed into
three distinct sets of voltage components [126]. These components, known as “symmetrical
components,” are classified into positive sequence, negative sequence, and zero sequence.
Their schematic representation is shown in Figure 17a. The positive and negative sequence
components represent three-phase, rotationally balanced phases, while the zero sequence
components correspond to a phase with a zero-phase angle. To provide a clearer under-
standing of this decomposition, Figure 17b illustrates how an unbalanced three-phase
voltage breaks down into its symmetrical voltage components.

Unlike positive and negative sequence currents, zero-sequence currents present a
unique challenge. Unlike the former, which compensate for each other, zero-sequence
currents add arithmetically at the neutral point of a three-phase, four-wire system. This
accumulation can lead to the overloading of the neutral conductor or cause a higher voltage
between neutral and earth. Additionally, harmonic currents of any sequence flowing
through an AC drive can increase the RMS current, resulting in higher system losses,
increased THD for current or voltage, and potential overheating and vibration issues in the
machine [135].
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(a)  (b) 

Figure 17. (a) Symmetrical components. (b) Decomposition of an unbalanced three-phase voltage
into symmetrical components.

In a DTLI-powered configuration with a single DCB source, zero-sequence currents (ZSCs)
can occur due to ZSV. This voltage arises from the asymmetry of the instantaneous pulse width
modulated phase voltages applied to the machine windings, which results from the use of
spatial voltage vectors. The corresponding equivalent diagram of the zero-sequence loop is
shown in Figure 18. In this diagram, (L0) represents the inductance of the homopolar sequence,
(R) is the resistance of the phase winding, and Vcmv,i and Vcmv,j are the CMVs generated by the
two inverters in the system, respectively.

Figure 18. ZSV equivalent circuit of an OEWM.

The ZSV can be expressed in terms of the CMV of each inverter
(

Vcmvi , Vcmvj

)
as

follows [62]:
Vzsv = Vcmvi − Vcmvj (20)

Vzsv =

(
Si1 − Sj1

)
+

(
Si3 − Sj3

)
+

(
Si5 − Sj5

)
3

Vdc (21)

In the DTLI configuration, the ZSV resulting from the 64 space vector combinations
can be calculated using Equation (21), as shown in Table 4. From Table 3, it is clear that
the zero vectors (Vi7Vj7, Vi8Vj8) and the intermediate vectors (Vi1Vj3, Vi2Vj4, Vi3Vj5, Vi4Vj6,
Vi5Vj1, Vi6Vj2, Vi1Vj5, Vi2Vj6, Vi3Vj1, Vi4Vj2, Vi5Vj3, Vi6Vj4) eliminate the ZSV. Conversely,
large vectors (Vi1Vj4, Vi2Vj5, Vi3Vj6, Vi4Vj1, Vi5Vj2, Vi6Vj3) and zero vectors (Vi8Vj7, Vi7Vj8)
generate various levels of ZSV.

Tables 3 and 4 demonstrate that vectors generating ZSV effectively eliminate CMV.
In contrast, vectors designed to eliminate ZSV inevitably introduce CMV. These results
highlight the complex interplay between the vectors responsible for both generating and
reducing the CMV and ZSV components.

• ZSV reduction

The ZSV issue generates ZSCs, leading to the presence of triple current harmonics [137].
This current can be harmful to motor windings, resulting in increased copper losses and
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potential circuit saturation. Several methods have been proposed to eliminate this voltage
in DTLI configurations. In [148], the solution involved integrating auxiliary switches, while,
in [91], an approach was suggested where one side of the OEWM is fed by a three-level
inverter, and the other side is fed by a two-level inverter. However, these solutions require
additional hardware, which increases costs. Therefore, a more cost-effective solution would
be to design appropriate control strategies to eliminate the ZSV. For instance, in [149],
the authors proposed desynchronizing the control between the two inverters to create
a 120◦ phase shift between the voltages of the first and second inverters. Similarly, the
authors of [150,151] employed a 180◦ phase shift and introduced the use of even or odd
synchronous vectors. In [152], two approaches were suggested that allow for free selection
of DTLI switching states. However, these approaches not only eliminate the ZSV but also
restrict the inverter switching. Finally, the authors of [48,153] developed a technique called
Decoupled Sample-Averaged Zero-Sequence Elimination, which forces the ZSV to zero
while minimizing switching losses. A new method tailored for low switching frequencies,
called Synchronous Off-Line Optimum PWM, was presented in [154].

Table 4. ZSV switching vector variations.

N◦ Vectors ZSV Levels

1 Vi8Vj7 −Vdc

2 Vi8Vj4, Vi8Vj6, Vi8Vj2, Vi5Vj7, Vi3Vj7, Vi1Vj7 −2Vdc/3

3 Vi8Vj5, Vi8Vj3, Vi5Vj4, Vi3Vj4, Vi8Vj1, Vi5Vj2, Vi3Vj6, Vi3Vj2,
Vi4Vj7, Vi1Vj4, Vi1Vj6, Vi1Vj2, Vi6Vj7, Vi2Vj7, Vi5Vj6

−Vdc/3

4
Vi1Vj3, Vi6Vj4, Vi2Vj4, Vi1Vj5, Vi3Vj5, Vi2Vj6, Vi4Vj6, Vi3Vj1,
Vi5Vj1, Vi4Vj2, Vi5Vj3, Vi6Vj2, Vi7Vj7, Vi8Vj8, Vi1Vj1, Vi5Vj5,

Vi4Vj4, Vi3Vj3, Vi2Vj2, Vi1Vj1

0

5 Vi5Vj8, Vi3Vj8, Vi4Vj5, Vi4Vj3, Vi1Vj8, Vi2Vj5, Vi6Vj3, Vi2Vj3,
Vi7Vj4, Vi4Vj1, Vi6Vj1, Vi2Vj1, Vi7Vj6, Vi7Vj2, Vi6Vj5

Vdc/3

6 Vi4Vj8, Vi6Vj8, Vi2Vj8, Vi7Vj5, Vi7Vj3, Vi7Vj1 2Vdc/3

7 Vi7Vj8 Vdc

6.1.4. DCB Overcharging

DTLI configurations, supplied by two isolated and symmetrical voltage sources (with
a voltage ratio of 1 : 1, i.e., both converters use the same voltage level), designed to improve
output voltage quality by enabling three-level operation, represented a significant advance
in terms of output voltage quality [155].

However, to further improve voltage quality, configurations with two isolated but
asymmetrical voltage sources (with a voltage ratio of 2 : 1) were introduced, allowing a four-
level operation [67]. However, the use of these asymmetrical sources introduced a potential
overcharging problem, particularly at the DC bus capacitor (DCB-C) (see Figure 19).

The overcharging problem is related to the phase current flowing in the DCB-C during
the modulation process. This current is made up of the components ia, ib, and ic, as shown
in Figure 19. Depending on the specific switching states, these currents can cause the
DCB-C to overcharge. To better understand these scenarios, Figure 20 shows different cases
of current flow in the DCB-C, using colors to indicate the path of phase current flow. Green
represents the ia current, red the ib current, and blue the ic current.
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Figure 19. DTLI structure (the overcharging effect).

(a) (b) 

(c) (d)

Figure 20. Examples of currents affecting the DCB-C as a function of the switching vectors applied:
(a) Vi1Vj1, (b) Vi2Vj7, (c) Vi2Vj3, (d) Vi1Vj6.

For example, in Figure 20a, current ia acts on the positive pole of the DCB-C for the
switching state

(
Vi1Vj1

)
. However, for the switching state

(
Vi2Vj7

)
, shown in Figure 20b,

no current flows through the DCB-C. Figure 20c,d show the current flows resulting from
switching states

(
Vi1Vj6

)
and

(
Vi2Vj3

)
, respectively. In the case of the

(
Vi2Vj3

)
state, the ib

current flows in the positive polarity of the DCB-C, while, for the
(
Vi1Vj6

)
switching state,

it flows in the negative polarity of the DCB-C. These currents are referred to as +ib and −ib,
respectively.

• Solving the overcharging problem

When addressing the issue of overcharging in DTLI systems, the literature typi-
cally presents two main approaches. The first approach involves adjusting modula-
tion schemes [67,116,118,129,131,156], while the second involves the use of additional
hardware [113,117,119,130].

In the first approach, switching states are selected by analyzing the current associated
with these states to identify those that are likely to cause overcharging. These problematic
states are then avoided during the modulation process. This method of voltage regulation,
which assumes the direction of the load current, is referred to as the passive regulation
method [157]. However, the disadvantage of this approach is that it reduces the number of
vectors available for modulation, which can negatively impact the quality of the output
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voltage. A strategy to switch the master inverter while keeping the slave inverter engaged
is presented in [118], but this approach involves a larger modulation area, which may result
in higher harmonic distortion in the inverter output. To improve power quality, a coupled
discontinuous carrier modulation technique is proposed in [129], but this can increase
switching losses. A significant limitation of passive control is that it assumes the direction
of current, which can be affected by the power factor of the load [157]. An enhanced version
of passive control, called active control, was proposed in [156]. This approach actively
selects the appropriate states based on control requirements and measured phase current
values.

The second approach, which utilizes additional hardware, is based on the nested
rectifier–inverter structure proposed in [117] (see Figure 21) and further refined in [158].
In this structure, the slave inverter with a lower DCB voltage is nested inside a higher-
voltage DCB feeding the master inverter. This configuration enables the implementation
of advanced modulation schemes to optimize voltage utilization for motors [119] or to
suppress ZSCs in an averaged manner [130].

Figure 21. DTLI with a nested rectifier–inverter with OEWM phase connection for the Vi1Vj1 state
reported in [117].

It should be noted that, while the nested rectifier–inverter configuration can address
the overcharging problem, it requires an additional isolated DC power supply. This addition
can lead to increased complexity, size, and cost of the motor drive system [118,129].

6.1.5. Floating-Capacitor (FC) Voltage

Compared to other DTLI configurations, whether with isolated or shared continuous
buses, the structure based on a continuous bus and an FC has the notable advantage of
minimizing the circulation of ZSVs (ZSCs), which is virtually nonexistent, and does not
require additional isolation circuits. However, this approach is not without significant
challenges. The main obstacle it faces lies in FC voltage management, which, due to its
floating nature [119], generates undesirable voltage steps at the converter output.

As a result of the voltage control approach applied to both converters, the voltage
across the load becomes unpredictable. These unwanted voltage steps have the potential to
significantly degrade output performance, thereby reducing the attractiveness of this con-
figuration [120]. For example, in the case where the voltage ratio is 1 : 0.5, Table 5 presents
the 37 space vectors that will charge or discharge the FC and generate a voltage variation.
These vectors can be classified into three types: Type 1 for vectors with redundancy states
that cause the phase current to act on both the positive and negative polarities of the FC,
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Type 2 for vectors that have only one instance of current flow, and Type 3 for vectors that
have no effect on the voltage variation in the FC.

• Maintaining FC voltage

Table 5. Effects of the three types of vectors on current flow in the FC.

Sector Type 1: Current (±) Type 2: Current (+ or −) Type 3: No Effects

1 Vi1Vj1, Vi8Vj4, Vi7Vj4, Vi2Vj2, Vi8Vj5, Vi7Vj5, Vi2Vj3, Vi1Vj6 Vi1Vj4, Vi1Vj5, Vi2Vj4, Vi2Vj5 Vi7Vj7, Vi8Vj8, Vi7Vj8, Vi8Vj7, Vi1Vj8, Vi1Vj7, Vi2Vj8, Vi2Vj7

2 Vi2Vj2, Vi8Vj5, Vi7Vj5, Vi3Vj3, Vi8Vj6, Vi7Vj6, Vi3Vj4, Vi2Vj1 Vi2Vj5, Vi2Vj6, Vi3Vj5, Vi3Vj6 Vi7Vj7, Vi8Vj8, Vi7Vj8, Vi8Vj7, Vi2Vj8, Vi2Vj7, Vi3Vj8, Vi3Vj7

3 Vi3Vj3, Vi8Vj6, Vi7Vj6, Vi4Vj4, Vi8Vj1, Vi7Vj1, Vi4Vj5, Vi3Vj2 Vi3Vj6, Vi3Vj1, Vi4Vj6, Vi4Vj1 Vi7Vj7, Vi8Vj8, Vi7Vj8, Vi8Vj7, Vi3Vj8, Vi3Vj7, Vi4Vj8, Vi4Vj7

4 Vi4Vj4, Vi8Vj1, Vi7Vj1, Vi5Vj5, Vi8Vj2, Vi7Vj2, Vi5Vj6, Vi4Vj3 Vi4Vj1, Vi4Vj2, Vi5Vj1, Vi5Vj2 Vi7Vj7, Vi8Vj8, Vi7Vj8, Vi8Vj7, Vi4Vj8, Vi4Vj7, Vi5Vj8, Vi5Vj7

5 Vi5Vj5, Vi8Vj2, Vi7Vj2, Vi6Vj6, Vi8Vj3, Vi7Vj3, Vi6Vj1, Vi5Vj4 Vi5Vj2, Vi5Vj3, Vi6Vj2, Vi6Vj3 Vi7Vj7, Vi8Vj8, Vi7Vj8, Vi8Vj7, Vi5Vj8, Vi5Vj7, Vi6Vj8, Vi6Vj7

6 Vi5Vj5, Vi8Vj2, Vi7Vj2, Vi6Vj6, Vi8Vj3, Vi7Vj3, Vi6Vj1, Vi5Vj4 Vi6Vj3, Vi6Vj4, Vi1Vj3, Vi1Vj4 Vi7Vj7, Vi8Vj8, Vi7Vj8, Vi8Vj7, Vi6Vj8, Vi6Vj7, Vi1Vj8, Vi1Vj7

The authors in [121,125] addressed the issue of FC voltage regulation in a DTLI while
maintaining multilevel operation. Several approaches were examined:

1. Coupled Modulation [121,123–125,128,159]: This method treats the DTLI as a single
unit for modulation, enabling analysis of the switching states’ impact on the capacitor
voltage in steady-state operation. However, there is a risk of under-utilizing the
capacitor voltage, which can reduce the output level.

2. FC Voltage Regulation with Reference to Motor Power Factor [121]: This method
involves feedback from the motor power factor angle for regulation, providing an
active yet complex solution based on motor speed.

3. Decoupled Modulation [65,122,160–163]: In this approach, the FC is treated as a
reactive power capacitor, and active power regulation is applied to the FC. However,
it may lead to undesirable voltage steps that affect output performance.

4. Step Modulation for the Master Inverter and High-Frequency PWM for the Slave [164]:
In this scheme, the master inverter operates at the fundamental frequency, while
the slave inverter uses high-frequency modulation. The FC voltage is regulated by
adjusting the trigger angle of the fundamental voltage. While this approach reduces
switching losses, it may not be suitable for all situations and is relatively complex.

6.2. Energy Efficiency: Power Losses

Generally, there are two types of losses in PWM power electronics converters: con-
duction losses (Pcond) and switching losses (Pswi), with switching losses occurring during
the transitions from tswi,on to switch-on and from tswi,o f f to switch-off. These losses are
expressed as follows [75]:

Pcond,Sij =
Von,Sij Ionton

Ts
(22)

Pswi =

[
1
2

vswiiswi

(
tswi,on + tswi,o f f

)]
× fswi (23)

where iswi = Ion is the instantaneous phase current, vswi is the switch-off voltage, tswi,on and
tswi,o f f are the switch-on and switch-off times, Von,Sij is the voltage drop, ton is the on-time,
and fswi is the switching frequency.

It is well established that, in power semiconductor devices, power losses due to
switching are directly proportional to the switching frequency. These switching-related
losses occur during the turn-on and turn-off phases of the device and are mainly influenced
by the time over which the switching voltage and current rise and fall, respectively [165]. In
other words, as the switching frequency increases, the power losses generated by switching
also increase. These losses are primarily determined by the variations in voltage and current
during these phases.
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As an example, Figure 22 illustrates phase A of an inverter arm. In this diagram,
components S+

ij and S−
ij represent the upper and lower switches of the arm, while D+

A and

D−
A are the associated antiparallel diodes. Furthermore, Figure 23 shows the voltage across

the switch and the antiparallel diode, as well as the current flowing through them and the
resulting power losses, particularly when Ia > 0.

Figure 22. Phase A of the inverter branch.

Figure 23. Current through inverter switches and voltage drop between them in phase branch A.

However, the introduction of DTLIs into a system can negatively impact its overall
efficiency, primarily due to the increased power losses they generate. In the context of our
configuration, it is important to highlight that total switching losses are significantly higher,
potentially reaching up to twice the levels observed in conventional systems [97].

• Power loss reduction

To increase the efficiency of DTLI systems, various modulation strategies have
been explored in the literature. In references [91,151,152,166], the sub-hexagonal center
PWM (SHCPWM) modulation scheme, based on PWM pulse shifting, has been developed
to mitigate switching losses. This method involves sequential switching of the two invert-
ers, effectively halving switching losses compared to conventional DTLI configurations.
Additionally, SHCPWM avoids the generation of unwanted bearing currents [91]. How-
ever, it is limited by a restricted set of switching states and requires complex PWM pulse
reordering, which can be computationally intensive [91,151,152,166].

Another approach to minimizing switching losses is discontinuous pulse width modu-
lation (DPWM), as described in [118,167,168]. DPWM holds certain power semiconductors
in the ON or OFF position over specific intervals. This technique is more efficient than
space vector PWM (SVPWM) for high-power, high-frequency switching applications [59].
Furthermore, different DPWM variants, such as DPWM 30◦, 60◦, and 120◦, have been
developed, which reduce switching losses by an average of 33% by avoiding switching
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transitions near phase current peaks [169]. DPWM also accounts for the phase difference
between current and voltage, even when the power factor is considered [170].

7. Impact of Control Strategies on OEWM-DTLI Performance
As previously mentioned, the OEWM system is powered by a DTLI, and its modeling

is similar to that of a conventional AC machine. In terms of control, two complementary
levels of strategies can be identified in the literature: high-level control techniques, which
focus on the regulation of machine variables (such as scalar control, vector control, and
direct torque control (DTC)), and low-level control techniques, which deal directly with the
generation of the modulation and carrier signals, typically based on PWM.

Given our focus on voltage quality and energy efficiency, we concentrate on the
PWM control of both inverters. Thus, the performance of the OEWM largely depends on
how these two inverters are modulated to produce the appropriate output signals.

To provide an overview of the existing literature, Table 6 presents a summary of
the three types of configurations studied, highlighting their key contributions and their
significant effects on OEWM performance. These contributions are particularly notable for
their substantial improvements in critical performance parameters, including overcharging
of the capacity, CMV, ZSV, THD, and the efficiency of the DTLI system.

Table 6. Summary of existing contributions on DTLI configurations and their impact on
OEWM performance.

DCB Type REF Proposed Control Strategy
Improved Performances

ZSV CMV Overcharging THD Efficiency

Type 1

[72]

Proposes the PWM7 strategy, which is based on the
combination of switching vectors from
groups (3216/3456).

✓ ✓ ✗ ✓ ✓

Proposes the PWM9 strategy, primarily relying on the
combination of switching vectors from
the (3216/4451) groups.

✓ ✓ ✗ ✗ ✗

Introduces the PWM15 strategy, which relies mainly on
the combination of switching vectors from
groups (4211/4451).

✗ ✓ ✗ ✓ ✗

[171]

Proposes the use of Zero Sequence Current hysteresis
control based on Space Vector Modulation to improve
the suppression of parasitic currents and enhance
overall system performance.

✓ ✗ ✓ ✓ ✗

[150]

Proposes a carrier-based SVPWM strategy, where the
switching duty cycles are calculated using both the
measured and reference voltages to improve
modulation accuracy and system stability.

✓ ✓ ✓ ✓ ✗

[51]

Proposes a modified SVPWM technique that relies on
the application of neighboring vectors, excluding the
use of zero vectors, to enhance performance and reduce
harmonic distortion.

✓ ✓ ✓ ✓ ✓

[97]

Proposes a generalized discontinuous PWM strategy,
which aims to optimize the modulation process by
introducing discontinuous patterns to improve the
efficiency of the system.

✓ ✗ ✓ ✗ ✓

[172]
Proposes a strategy that decomposes the Zero Sequence
Current into two orthogonal continuous signals using
orthogonal integral–gate detection technology.

✓ ✗ ✓ ✓ ✗

[131]
Proposes a discontinuous PWM strategy optimized
using a genetic algorithm, aiming to enhance the
performance and efficiency of the system.

✓ ✓ ✓ ✓ ✓

[80]

Proposes a Fault-Tolerant Control (FTC) method that
uses two-phase current sensors when the one-phase
current sensor fails while simultaneously suppressing
the Zero Sequence Current (ZSC) during post-fault
operation to maintain system reliability
and performance.

✓ ✗ ✓ ✗ ✗
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Table 6. Cont.

DCB Type REF Proposed Control Strategy
Improved Performances

ZSV CMV Overcharging THD Efficiency

Type 1

[173]

Introduces a modified hysteresis torque controller into
the direct torque control scheme of a 5-phase open-end
winding induction motor, with the goal of enhancing
steady-state performance.

✗ ✗ ✓ ✓ ✗

[174]
Proposes a novel PWM strategy for high modulation
index regions, aimed at eliminating the Zero Sequence
Current component.

✓ ✗ ✓ ✓ ✗

Type 2

[156]

Proposes a Nested Inverter Clamped Sample-Averaged
Zero-Sequence Elimination PWM strategy, based on the
strategic placement of the zero-vector period, and
introduces a nested rectifier–inverter circuit design.

✓ ✗ ✓ ✗ ✓

[131]

Proposes a strategy based on unequal reference sharing
algorithms utilizing discontinuous PWM and
introduces the Coupled Phase Disposition strategy, also
based on discontinuous PWM.

✓ ✗ ✓ ✓ ✗

[69]
proposes a near-state Pulse Width Modulation strategy,
which focuses on the optimal adjustment of the offset
angle and modulation index.

✓ ✗ ✗ ✓ ✗

[117]

Proposes a Sample-Averaged Zero-Sequence
Elimination SVPWM strategy, which is based on the
adjustment of switching times. Additionally, the work
presents a nested rectifier-inverter combination within
the conventional two-level inverter configuration,
utilizing three DCBs.

✓ ✗ ✓ ✓ ✗

[67]

Proposes a decoupled equal-duty SVPWM strategy,
which is based on the use of cycles for all phases. ✓ ✗ ✓ ✗ ✗

Proposes a decoupled proportional-duty SVPWM
strategy, which adjusts the duty cycle based on the
DCB voltage.

✓ ✗ ✓ ✓ ✓

[113]

Proposes a Decoupled Sampled Average Zero Sequence
Elimination strategy, aiming to improve system
performance by optimizing zero-sequence current
management. Also introduces a power circuit
configuration that integrates a rectifier–inverter within a
conventional two-level inverter setup.

✓ ✗ ✓ ✓ ✗

[175]
Proposes a new Predictive Current Control strategy,
aiming to enhance the dynamic performance and
current regulation of the OEWM-DTLI system.

✓ ✗ ✗ ✓ ✓

[176]

Proposes a selection of PWM switching patterns,
investigating the effects of continuous PWM,
discontinuous PWM, mixed continuous PWM, and
mixed discontinuous PWM strategies to enhance the
voltage quality and efficiency of the DTLI system.

✗ ✗ ✗ ✓ ✓

[177]

Proposes a class of carrier-based PWM methods in
which two phases in each inverter are clamped
simultaneously during the entire fundamental cycle,
while only one phase switches to generate the reference
voltage, aiming to reduce switching losses and
common-mode voltage.

✗ ✓ ✗ ✓ ✓

[178]

Proposes a two-stage model-predictive direct torque
control scheme designed to balance the state-of-charge
of batteries through the appropriate selection of inverter
voltage vectors.

✗ ✗ ✗ ✓ ✓

Type 3

[125]

Proposes an SVPWM strategy based on five-state
switching, avoiding transitions through neighboring
vector switching, thereby improving switching
efficiency and reducing losses.

✗ ✗ ✓ ✓ ✓

[65]
Proposes a hybrid PWM strategy in which the first
inverter is controlled using Six-Step PWM, while the
second inverter is controlled using conventional PWM.

✗ ✗ ✓ ✓ ✓

[161]

Proposes a hybrid PWM strategy, where the first inverter
uses a PWM method based on a double vector,
combining an active vector with an optimal zero vector
within a switching period, while the second inverter is
controlled by conventional SVPWM.

✓ ✗ ✓ ✓ ✓

[119]

Proposes a floating capacitor voltage regulation scheme
based on the use of reference and measured voltages and
currents, combined with an improved SVPWM strategy
incorporating current feedback and enhancing the
exploitation of the converter voltage.

✓ ✗ ✓ ✗ ✗
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Table 6. Cont.

DCB Type REF Proposed Control Strategy
Improved Performances

ZSV CMV Overcharging THD Efficiency

Type 3

[47]

Proposes a control scheme based on the optimum
selection of voltage ratios, aiming to enhance the
modulation performance and improve the voltage
utilization of the inverter.

✓ ✗ ✓ ✓ ✗

[179]

Proposes a control scheme based on the decoupling of
motor dynamics and floating capacitor behavior, in
order to improve system stability and
control performance.

✓ ✗ ✓ ✓ ✗

[180]
Proposes a new control scheme aimed at extending the
speed range of dual inverter-fed induction motor drives
with open-end stator windings.

✗ ✗ ✓ ✗ ✗

8. Conclusions
This paper presented a comprehensive technical analysis of Dual Two-Level Inverter (DTLI)

topologies for motor drive applications. The investigation covered the fundamental operating
principles of DTLI systems and examined three key structural configurations: the conventional
Common DC Bus (C-DCB), the Two-Isolated DC Bus (TI-DCB), and the more recent Floating
Capacitor-based DC Bus (DCB-FC). A detailed mathematical model of the DTLI system was
developed to support this analysis, highlighting voltage distribution mechanisms and control
strategies specific to each architecture.

To evaluate system performance, several critical criteria were considered, includ-
ing total harmonic distortion (THD), common-mode voltage (CMV), zero-sequence
voltage (ZSV), energy efficiency, floating capacitor voltage behavior, and the risk of DC bus
overcharging. In addition, this study included a comparative summary (Table 6) of several
PWM techniques, emphasizing their influence on waveform quality and overall system
efficiency across the three configurations.

Among the architectures studied, the dual C-DCB configuration stood out for its
simplicity and robustness, attributed to its symmetrical design and straightforward con-
trol implementation without the need for additional hardware. However, its limita-
tions in suppressing ZSV, alongside the DC bus overcharging risks associated with the
TI-DCB configuration, motivated further interest in the DCB-FC structure. The DCB-FC
demonstrated superior performance thanks to its self-regulated floating capacitor voltage
and the elimination of isolation requirements.

In conclusion, both the C-DCB and DCB-FC configurations exhibit strong potential for
modern high-performance power conversion systems, offering practical trade-offs between
simplicity, control complexity, and electromagnetic performance. These findings serve as a
foundation for the development of more efficient and reliable inverter systems in future
industrial and renewable energy applications.
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DTLI Dual Two-Level Inverter
DC Direct Current
AC Alternative Current
FACTS Flexible AC Transmission System
THD Total harmonic distortion
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NPC Neutral Point Clamped
OEWM Open-end winding machine
FC Floating capacitor
DCB Direct Current Bus
C-DCB Common-Direct Current Bus
TI-DCB Two Isolated-Direct Current Bus
DCB-FC Direct Current Bus–Floating Capacitor
ZSC Zero-sequence current
ZSV Zero-sequence voltage
CMV Common-mode voltage
EV Electrical Vehicle
HEV Hybrid Electrical Vehicle
PV Photovoltaic
IGBT Insulated-Gate Bipolar Transistor
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
SHC Sub-hexagonal center
PCC Point of Common Coupling
RMS Root Mean Square
DCB-C Direct Current Bus Capacitor
PWM Pulse width modulation
SVPWM Space vector pulse width modulation
DPWM Discontinuous pulse width modulation
SHCPWM Sub-hexagonal center pulse width modulation
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